Federated Neural Collaborative Filtering

نویسندگان

چکیده

In this work, we present a federated version of the state-of-the-art Neural Collaborative Filtering (NCF) approach for item recommendations. The system, named FedNCF, enables learning without requiring users to disclose or transmit their raw data. Data localization preserves data privacy and complies with regulations such as GDPR. Although model training local dissemination, transmission clients’ updates raises additional issues. To address challenge, incorporate privacy-preserving aggregation method that satisfies security requirements against an honest but curious entity. We argue theoretically experimentally existing algorithms are inconsistent latent factor updates. propose enhancement by decomposing step into matrix factorization neural network-based averaging. Experimental validation shows FedNCF achieves comparable recommendation quality original NCF while our proposed leads faster convergence compared methods. investigate effectiveness recommender system evaluate mechanism in terms computational cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Collaborative Filtering

In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation — collaborative filtering — on t...

متن کامل

Neural Network: Collaborative Filtering Model

Systems are one of the business intelligence systems that provide suggestions to the active users for their items purchase in e-commerce store. Most recommender systems use collaborative filtering (CF) or content-based or hybrid methods to predict new items of interest for a user. Memory-based algorithms recommend according to the preferences of nearest neighbours based on similarity, and model...

متن کامل

Hybrid Collaborative Filtering with Neural Networks

Collaborative Filtering aims at exploiting the feedback of users to provide personalised recommendations. Such algorithms look for latent variables in a large sparse matrix of ratings. They can be enhanced by adding side information to tackle the well-known cold start problem. While Neural Networks have tremendous success in image and speech recognition, they have received less attention in Col...

متن کامل

Collaborative Filtering Using Associative Neural Memory

There are two types of collaborative filtering (CF) systems, user-based and item-based. This paper introduces an item-based CF system for ranking derived from Linear Associative Memory (LAM). LAM is an architecture that is founded on neuropsychological principles and is well studied in the neural network community. We show that our CF system has a user-based interpretation. Given a random subse...

متن کامل

A Neural Autoregressive Framework for Collaborative Filtering

Restricted Boltzmann Machine (RBM) is a two layer undirected graph model that capable to represent complex distributions. Recent research has shown RBM-based approach has comparable performance with, even performs better than previous models on many collaborative filtering (CF) tasks. However, the intractable inference makes the training of RBM sophisticated, which prevents it from practical ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Knowledge Based Systems

سال: 2022

ISSN: ['1872-7409', '0950-7051']

DOI: https://doi.org/10.1016/j.knosys.2022.108441